ON SUFFICIENT OPTIMALITY CONDITIONS

PMM Vol. 42, No.6, 1978, pp. 1131-1135 Iu. B. SEISOV (Askhabad) (Received September 1, 1977)

Sufficient conditions of optimality of the control in a nonlinear system are given. This involves a demand for existence of a function with specified properties. If this function is defined in a special manner, then the theorem derived in the paper yields the known theorem of Krotov [1]. A certain relaxation of the sufficient conditions given in [1] is obtained for the problems of the time optimal response in autonomous systems.

1. Let the controlled object be characterized by the phase coordinates $x = (x^1, x^2, \dots, x^n)$ in an n-dimensional Euclidean space E^n the law of variation of which is described by the differential equation

$$dx/dt = f(x, u, t)$$

$$(u = (u^1, u^2, ..., u^r), f = (f^1, f^2, ..., f^n))$$
(1.1)

where u is an r-dimensional control vector. The components of the vector function f(x, u, t) are assumed to be continuous in all its arguments, and continuously differentiable with respect to the variables x^i , i = 1, 2, ..., n. We adopt, as the admissible controls, the set of all measurable functions u(t), $t_0 \le t \le t_1$ the values of which satisfy the restriction $u \in U$ where U is a compact in E^r .

Let Ω_0 and Ω_1 represent some admissible closed sets in E^n , and Ω an open set. The time instants t_0 and t_1 are not fixed. We set $t_0 \in T_0 = [\tau_0, \tau_0'], t_1 \in T_1 = [\tau_1, \tau_1'].$

The problem of optimal control consists of finding, from amongst all admissible controls which transport the object (1.1) from the position $x_0 \in \Omega_0$ to the position $x_1 \in \Omega_1$, such a control u(t), $t_0 \leqslant t \leqslant t_1$ and the corresponding trajectory x(t), $x(t) \in \Omega$, $t_0 \leqslant t \leqslant t_1$, $x(t_0) = x_0$, $x(t_1) = x_1$, which together impart the possible minimum value to the functional

$$I = \int_{t_0}^{t_1} f^{\circ}(x, u, t) dt$$

The function $f^{\circ}(x, u, t)$ is assumed to satisfy the same condition as the components of the vector function f(x, u, t).

Let the continuously differentiable function $\varphi(x^{\circ}, x, t)$ of n+2 variables x° , $x^{1}, x^{2}, \ldots, x^{n}, t$ be given. We introduce the function and the sets

$$R(x^{\circ}, x, u, t) = \frac{\partial \varphi}{\partial x^{\circ}} f^{\circ} + \frac{\partial \varphi}{\partial x} f + \frac{\partial \varphi}{\partial t}$$

$$Q = E^{1} \times \Omega \times [\tau_{0}, \tau_{1}']$$

$$\Pi = \{(x^{\circ}, x, t) : \varphi(x^{\circ}, x, t) \geq 0, (x^{\circ}, x, t) \in Q\}$$

The ore m. 1. The sufficient condition for the process $\{x_*(t), u_*(t)\}, x_*(t) \in \Omega$, $\{x_*(t_0^*), t_0^*\} \in \Omega_0 \times T_0$, $\{x_*(t_1^*), t_1^*\} \in \Omega_1 \times T_1$ to be optimal is, that a function $\varphi(x^0, x, t)$ continuously differentiable on the set Q exists such, that the following conditions hold:

A)
$$\max_{(x, t) \in \Omega_0 \times T_0} \varphi(0, x, t) = \varphi(0, x_*(t_0^*), t_0^*) = 0$$
B)
$$\sup_{u \in U, (x^0, x, t) \in \Pi} R(x^0, x, u, t) \leqslant 0$$

$$R(I_*(t), x_*(t), u_*(t), t) = 0, t_0^* \leqslant t \leqslant t_1^*$$

C)
$$\varphi(\xi, x, t) > 0$$
, $x \in \Omega_1$, $t \in T_1$, $\xi < I_*(t_1^*)$

where

$$I_{*}(t) = \int_{t, \bullet}^{t} f^{\circ}(x_{*}(t), u_{*}(t), t) dt$$

P r o o f. Let us consider the following system of differential equations in the space E^{n+2} :

$$\frac{dx^{\circ}}{dt} = f^{\circ}(x, u, t), \quad \frac{dx}{dt} = f(x, u, t), \quad \frac{dx^{n+1}}{dt} = 1$$
 (1.2)

By choosing an arbitary admissible control u(t), $t_0 \le t \le t_1$ and the initial Cauchy conditions

$$x^{\circ}(t_{0}) = 0, x(t_{0}) = x_{0} \in \Omega_{0}, \quad x^{n+1}(t_{0}) = t_{0} \in T_{0}$$
 (1.3)

we define a trajectory

$$x^{\circ}(t), x(t), x^{n+1}(t) \equiv t, t_0 \leqslant t \leqslant t_1$$
 (1.4)

of the system (1.2). The equation

$$\varphi(x^{\circ}, x, t) = 0 {(1.5)}$$

separates the set Q into two subsets. Let us denote by Q^+ the subset of Q on which the function φ (x°, x, t) is positive, and by Q^- the other subset. Condition (A) implies that the initial set (1.3) is completely contained in Q^- and the point $(0, x_* (t_0^*), t_0^*)$ lies on the surface (1.4). Condition (B) implies that the surface (1.5) is "impermeable; i.e. the trajectory of the system (1.2) emerging from the set (1.3) will remain within Q^- , under any admissible control u (t), $t_0 \leqslant t \leqslant t_1$, $t_0 \in T_0$, $t_1 \in T_1$, during the whole process. At the same time, the integral curve

$$(x_*^0(t) = I_*(t)), \quad x_*(t), \quad x_*^{n+1}(t) = t, \quad t_0^* \leqslant t \leqslant t_1^*$$

hes on the surface (1.5), i.e.

$$\varphi(I_*(t), x_*(t), t) = 0, \quad t_0^* \leqslant t \leqslant t_1^*$$
(1.6)

Let us assume that the process in question is not optimal, i.e. that there exists a process $\{x\ (t),\ u\ (t)\}$, $t_0\leqslant t\leqslant t_1,\ x\ (t)\subset\Omega, \{x\ (t_0),\ t_0\}\in\Omega_0\times T_0, \{x\ (t_1),\ t_1\}\in\Omega_1\times T_1,$ such, that

$$I < I_* (t_{\perp}^*) \tag{1.7}$$

Consider the integral curve (1.4) of the system (1.2). Since $x^{\circ}(t_0) = 0$ $x(t_0) \in \Omega_0$, $t_0 \in T_0$, and u(t), $t_0 \leqslant t \leqslant t_1$ is an admissible control, the integral curve lies, as we showed before, in the subset Q^- , i.e.

$$\varphi(x^{\circ}(t), x(t), t) \leqslant 0, \quad t_{0} \leqslant t \leqslant t_{1}$$

But condition (C) and the inequality (1.7) together imply that

$$\varphi(x^{\circ}(t_1), x(t_1), t_1) > 0$$

and the resulting contradiction proves the theorem.

If the process $\{x_*(t), u_*(t)\}$ satisfies the condition of Theorem 1, then we have the following inequality:

$$\varphi(I_*(t_1^*), x, t) \geqslant 0, x \in \Omega_1, t \in T_1$$
(1.8)

Indeed, let the opposite inequality hold at some point $x=a \in \Omega_1$ and $t=\mu \in T_1$:

$$\varphi(I_*(t_1^*), a, \mu) = b < 0$$

From condition (C) we have, for any $\varepsilon > 0$,

$$\varphi\left(I_{*}\left(t_{1}^{*}\right)-\varepsilon,\ a,\ \mu\right)=b-\frac{\partial\varphi\left(I_{*}\left(t_{1}^{*}\right),\ a,\ \mu\right)}{\partial x^{\circ}}\varepsilon+o\left(\varepsilon\right)>0$$

and this is impossible, since b < 0 by definition.

Finally we note, that the inequality (1.8) becomes an equality at the point x_* $(t_1^*) \in \Omega_1$, $t_1^* \in T_1$. This follows directly from (1.6) at $t = t_1^*$.

All this, makes possible the following assertion:

$$\min_{(x, t) \in \Omega_1 \times T_1} \varphi(I_*(t_1^*), x, t) = 0$$

The above expresssion formally coincides with condition (A) of Theorem 1; it is not however equivalent to condition (C), being substantially weaker.

If we define the function $\varphi(x^{\circ}, x, t)$ in the following form:

$$\varphi(x^{0}, x, t) = K(x, t) - x^{0}$$
(1.9)

then a theorem due to Krotov [1] follows from Theorem 1.

Theorem 1 given above ans stating the sufficient conditions of optimality, is a direct generalization of the results of [3].

2. Let the behavior of the object be described by

$$x' = f(x, u)$$

Consider the problem of fast response when $\Omega_0 = \{x_0\}$, $\Omega_1 = \{x_1\}$. Let $\{x(t), u(t)\}$, $0 \le t \le t_1$ be a process satisfying the Pontriagin maximum principle [4], and $\psi(t)$, $0 \le t \le t_1$ be a vector function corresponding to this process. Let us set

$$c(\psi, x) = \max_{u \in U} (\psi, f(x(u)))$$

Then provided that the control u(t), $0 \le t \le t_1$ is a piecewise continuous function, the following corollary can be obtained from Theorem 1.

Theorem 2. Let the function $c(\psi, x)$ be such that

$$c\left(\psi\left(t\right),\ x\right)-c\left(\psi\left(t\right),\ x\left(t\right)\right)-\left(\frac{\partial c\left(\psi\left(t\right),\ x\left(t\right)\right)}{\partial x}\ ,\ x-x\left(t\right)\right)\leqslant0\tag{2.1}$$

when $(\psi(t), x - x(t)) \ge 0$, and let the following condition hold:

$$(\psi(t), x_1 - x(t)) > 0, \ 0 \leqslant t < t_1 \tag{2.2}$$

Then the process $\{x\ (t),\ u\ (t)\},\ 0\leqslant t\leqslant t_1$ is optimal with respect to the time optimal response.

Proof. To apply Theorem 1 to the problem of time optimal response we must put $f^{\circ} \equiv 1$ and use the time t as the coordinate x° . Then, instead of the function $\varphi(x^{\circ}, x, t)$ we shall have $\varphi_1(t, x)$ and instead of $R(x^{\circ}, x, u, t)$, the function

$$R_1(t, x, u) = \frac{\partial \varphi_1}{\partial t} + \frac{\partial \varphi_1}{\partial x} f(x, u)$$

and the following sets, respectively

$$Q_1 = [0, t_1] \times E^n, \Pi_1 = \{(t, x): \varphi_1(t, x) \geqslant 0, (t, x) \in Q_1\}$$

For the process $\{x\ (t),\ u\ (t)\}$ to be optimal, it is sufficient that a function $\varphi_1\ (t,x)$, continuously differentiable on the set Q_1 exists such that the following conditions hold:

A₁)
$$\varphi_1(0, x(0)) = 0$$

B₁) $\sup_{u \in U, (t, x) \in \Pi_1} R_1(t, x, u) \le 0$
C₁) $\varphi_1(t, x_1) > 0, t < t_1$

Let us set

$$\varphi_1(t, x) = (\psi(t), x - x(t))$$
 (2.3)

The above function is continuously differentiable everywhere on the set Q_1 except at the points of a finite number of planes $t=\tau_i, i=1,2,...,N$ where τ_i denote points on the segment $[0, t_1]$ at which the function u(t) has first order discontinuities. We note that Theorem 1 remains valid when the function ceases to be continuously differentiable at the points of a finite number of planes

$$t = \tau_i \ (i = 1, 2, ..., N), \ \tau_i = \text{const}$$

When the function $\varphi_1(t, x)$ is given by (2.3), condition (A₁) is fulfilled automatically and condition (B₁) assumes the form

$$\sup_{\mathbf{u}\in U} R_1(t_n, x, u) \leqslant 0, \quad 0 \leqslant t \leqslant t_1, \quad (\psi(t), x - x(t)) \geqslant 0$$
 (2.4)

Let us transform the left-hand side of the inequality (2.4), with the particular form (2.3) of the function $\varphi_1(t, x)$ taken into account. We have

$$\frac{\partial \varphi_{1}(t, x)}{\partial x} = \psi(t), \quad \frac{\partial \varphi_{1}(t, x)}{\partial t} = (\psi(t), x - x(t)) - (\psi(t), x'(t)) = -\left(\frac{\partial c(\psi(t), x(t))}{\partial x}, x - x(t)\right) - c(\psi(t), x(t))$$
(2.5)

Here we have used the Pontriagin maximum principle

$$(\psi(t), f(x(t), u(t)) = \max_{u \in U} (\psi(t), f(x(t), u)) = c(\psi(t), x(t))$$

and the relation [2] $\psi'(t) = -\partial c (\psi(t), x(t))/\partial x$, which holds under the assumption that the function $c(\psi, x)$ is differentiable.

Using the relations (2.5) we conclude, that $R_1(t, x, u) \leq Q(t, x)$ where Q(t, x) is the left-hand side of the inequality (2.1). Therefore the condition (2.1) guarantees the validity of condition (B₁), and condition (C₁) can be written in the form (2.2), which completes the proof of Theorem 2.

In the theorem given in [2] the inequality (2.1) was required to hold over the whole space E^n .

3. It can be seen from the formula (1.9) that the sufficient conditions of optimality due to Krotov [1] follow from Theorem 1 provided that the equation $\phi\left(x^{\circ},\,x,\,t\right)=0$ can be solved for x° , i.e. the inequality

$$\partial \Phi (x^{\circ}, x, t)/\partial x^{\circ} \neq 0$$
 (3.1)

must hold over the whole domain of variation of the variables $(x, t) \in \Omega \times [\tau_0, \tau_1']$.

Let us assume that $f^{\circ}(x, u, t) > 0$ for all $u \in U$, $x \in \Omega$, $t \in [\tau_0, \tau_1']$. Let $\{x_*(t), u_*(t), \psi^*(t)\}$, $t_0 \leqslant t \leqslant t_1$ be the Pontriagin extremal in the problem of Sect. 1. The equation

$$x^{\circ} = \int_{t_{0}}^{t} f^{\circ} \left(x_{*} \left(\tau \right), u_{*} \left(\tau \right), \tau \right) d\tau$$

defines uniquely the function $t=\xi\left(x^{\circ}\right)$ by virtue of the assumption made with respect to the function $f^{\circ}\left(x,\,u,\,t\right)$. As in Sect. 2 setting

$$\Phi(x^{\circ}, x, t) = (\psi^{*}(\xi(x^{\circ})), x - x_{*}(\xi(x^{\circ}))) + \psi^{*}_{n+1}(\xi(x^{\circ})) (t - \xi(x^{\circ}))$$

we can obtain the sufficient conditions of optimality for the extremal $\{x_*(t), u_*(t), \psi^*(t)\}$, $t_0 \leqslant t \leqslant t_1$, similar to those formulated in Theorem 2. The equation

$$(\psi^* (\xi (x^\circ)), x - x_* (\xi (x^\circ))) + \psi^*_{n+1} (\xi (x^\circ)) (t - \xi (x^\circ)) = 0$$

is not solved for x° and, in addition, the condition (3.1) does not hold except in the trivial cases.

REFERENCES

- 1. Krotov, V. F. and Gurman, V. I. Methods and Problems of Optimal Control. M., Nauka, 1973.
- 2. Blagodatskikh, V. I. Sufficient conditions of optimality for differential inclusions. Izv. Akad. Nauk. SSSR, Ser. matem., Vol. 38, No. 3, 1974.
- 3. Se is ov. Iu. B. Sufficient conditions of optimality in the problem of fast response. Izv. Akad. Nauk TurkmSSR, Ser. fiz.-tekhn., khim, i geog. nauk, No. 2, 1976.
- 4. Pontriagin, L. S., Boltianskii, V. G., Gamkrelidze, R. V. and Mishchenko, E. F. The Mathematical Theory of Optimal Processes. (English translation) Pergamon Press, Book No. 10176, 1964.